网站首页 > 教程文章 正文
选自GitHub
项目作者:Shiqi Yu
参与:肖清
总是被各种依赖环境蹂躏?看看这个 C++编写的跨平台人脸检测项目,电脑手机都可运行!
项目地址:
https://github.com/ShiqiYu/libfacedetection
人脸检测可广泛应用于人机交互、安防监控、社交娱乐等领域,具有很强的实用价值,因此受到广泛关注与研究。在众多人脸检测方法中,使用卷积神经网络进行检测是目前较为流行的方法之一。然而在我们使用别人开源的项目时经常需要安装各种各样的依赖环境,不同的依赖环境在不同硬件平台或操作系统中支持程度不一样,增加了项目跨平台迁移的难度。
本文介绍的是一个使用卷积神经网络进行人脸检测的开源项目,它最大的亮点是能够在所有支持 C/C++的平台上编译运行。作者将预训练的 CNN 模型转换为静态变量后储存到了 C 文件里,使得该项目不需要任何其他依赖项(当然 OpenCV 还是需要的),仅仅只需要一个 C++编译器,就能在任何一个平台甚至嵌入式系统上编译并运行该项目。
尤其吸引人的是该项目使用 C++编写且支持 AVX2,在 i7 的 CPU 上就能跑出丧心病狂的 1000FPS!下图为项目作者给出的检测效果示例。
可以看到该项目不仅检测速度非常快,检测精度也很不错。于是,机器之心也上手测试了一番。
项目实测
我们在 Ubuntu 18.04 下测试这个人脸检测项目的效果。首先先使用一张相对简单的合照进行测试,其总共有 15 个人,分辨率为 970x546,检测结果如下图所示:
可以看到它准确的识别出了图片中所有的人像,在 CPU 上仅耗时 133ms 且置信度都为 99%。下图为加上 bounding box 后的检测效果图:
下面我们提高一下难度,使用一张开挂民族的图片测试一下效果。它也几乎把所有火车头上正面的面孔都识别出来了,火车车身上的人像没有识别出来,可能是因为那些人像实在是太小太密集的缘故。
编译过程
该项目编译需要 OpenCV,如果缺少 OpenCV 在使用 cmake 生成 makefile 时会报如下错误:
我们首先使用 wget
https://github.com/opencv/opencv/archive/3.4.0.tar.gz 下载 OpenCV 3.4.0 的源码,紧接着安装编译 OpenCV 需要的相关依赖项:
apt-get install build-essentialapt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-devadd-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
安装完依赖项之后我们将 OpenCV 的压缩包解压到当前目录下:
tar xvzf 3.4.0.tar.gz
为了避免在编译时将源码文件弄乱,我们新建一个名为 linuxidcbuild 的文件夹,在其下进行 OpenCV 的编译与安装:
mkdir linuxidcbuildcd linuxidcbuild/cmake ../opencv-3.4.0 -DWITH_GTK_2_X=ON -DCMAKE_INSTALL_PREFIX=/usr/local
在生成 makefile 的过程中可能会出现卡在下图的情况,
这是由于 ippicv 下载不成功导致的,在以下链接手动下载系统对应的 ippicv 版本:
https://github.com/opencv/opencv_3rdparty/tree/ippicv/master_20170822/ippicv
之后使用 vim
opencv-3.4.0/3rdparty/ippicv/ippicv.cmake 修改 OpenCV 的编译配置文件,将如下内容
"https://raw.githubusercontent.com/opencv/opencv_3rdparty/${IPPICV_COMMIT}/ippicv/ "
修改为我们刚存放 ippicv 的目录。再重新执行一次 cmake ../opencv-3.4.0 -DWITH_GTK_2_X=ON -DCMAKE_INSTALL_PREFIX=/usr/local,当出现下图的内容时说明成功生成了 makefile。
接下来我们执行 make 进行对 OpenCV 的编译:
这里编译的过程相对比较漫长,大约需要 20 分钟左右,消耗时间根据不同电脑配置会有所区别。当出现下图所示内容时说明编译完成。
之后使用 make install 进行安装,
安装成功后会出现如图所示界面:
以上即完成对 OpenCV 的安装。安装完成后使用 vim
/etc/ld.so.conf.d/opencv.conf 对其进行配置,在文件中加入/usr/local/lib 后保存退出。
使用 vim /etc/bash.bashrc 添加环境变量,在文末加入 export PKG_CONFIG_PATH=$
PKG_CONFIG_PATH:/usr/local/lib/pkgconfig,使用 source /etc/bash.bashrc 让新的环境变量生效。这样就配置好了 OpenCV,之后使用如下命令编译该项目:
git clone https://github.com/ShiqiYu/libfacedetectioncd libfacedetectionmkdir build; cd build; cmake ..; make
项目编译完成后会在 build 目录下生成对应可执行文件,可使用如下命令运行:
./detect-image-demo ../images/test.png
虽然看似操作非常复杂,但实际上主要就是编译 OpenCV,其它模块都可以直接在项目中完成编译。最后,就可以愉快地使用这个极速人脸检测模型了。
猜你喜欢
- 2025-05-08 使用Transformer来做物体检测(基于transformer的目标检测)
- 2025-05-08 C# 构建一个人脸识别AI的简单例子
- 2025-05-08 c# 实现图片识别?(c#图片识别库)
- 2025-05-08 170.Python——使用Gradio来展示实时人脸检测
- 2025-05-08 实战小项目:利用 OpenCV 快速完成人脸检测
- 2025-05-08 [OpenCV实战]2 人脸识别算法对比(opencv人脸识别函数)
- 2025-05-08 Python人脸识别实现方法与步骤(python人脸识别实例源代码)
- 2025-05-08 Java版人脸跟踪三部曲之三:编码实战
- 2025-05-08 OpenCV-Python速查表:从导入图像到人脸检测
- 2025-05-08 机器视觉之人脸识别(机器视觉人脸识别原理)
- 最近发表
-
- 一课译词:一刀两断(一刀两断成语解释)
- 核心短语break up用法解析(breakd短语)
- HTML+CSS 实现商品图片列表放大视觉效果 复制完整代码即可马上调用
- 前端实现右键自定义菜单(前端实现右键自定义菜单怎么设置)
- Python中docx与docxcompose批量合并多个Word文档并添加分页符
- Java 将Excel转为XML(java将xls转换成xlsx)
- jq+ajax+bootstrap改了一个动态分页的表格
- css兼容性问题及一些常见问题汇总大全,赶快收藏!
- Java 的业务逻辑验证框架 之-fluent-validator
- 小程序cover-view踩坑系列2(微信小程序overflow)
- 标签列表
-
- location.href (44)
- document.ready (36)
- git checkout -b (34)
- 跃点数 (35)
- 阿里云镜像地址 (33)
- qt qmessagebox (36)
- mybatis plus page (35)
- vue @scroll (38)
- 堆栈区别 (33)
- 什么是容器 (33)
- sha1 md5 (33)
- navicat导出数据 (34)
- 阿里云acp考试 (33)
- 阿里云 nacos (34)
- redhat官网下载镜像 (36)
- srs服务器 (33)
- pico开发者 (33)
- https的端口号 (34)
- vscode更改主题 (35)
- 阿里云资源池 (34)
- os.path.join (33)
- redis aof rdb 区别 (33)
- 302跳转 (33)
- http method (35)
- js array splice (33)