网站首页 > 教程文章 正文
目前大数据存储有两种方案可供选择:行存储(Row-Based)和列存储(Column-Based)。
什么是列存储
列式存储(column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。简单的来说就是数据的存储方式是按照列方向来存储的。
简单来说两者的区别就是如何从上图可以看出行存储数据条都是在一起的,列存储中数据是分开存放的。
行存储 VS 列存储
- 按数据读取方式
1)数据读取时,行存储通常将一行数据完全读出,如果只需要其中几列数据的情况,就会存在冗余列,出于缩短处理时间的考量,消除冗余列的过程通常是在内存中进行的。
2)列存储每次读取的数据是集合的一段或者全部,不存在冗余性问题。
3) 两种存储的数据分布。由于列存储的每一列数据类型是同质的,不存在二义性问题。比如说某列数据类型为整型(int),那么它的数据集合一定是整型数据。这种情况使数据解析变得十分容易。相比之下,行存储则要复杂得多,因为在一行记录中保存了多种类型的数据,数据解析需要在多种数据类型之间频繁转换,这个操作很消耗CPU,增加了解析的时间。所以,列存储的解析过程更有利于分析大数据。
4)从数据的压缩以及更性能的读取来对比
- 按数据写入方式
1)行存储的写入是一次完成。如果这种写入建立在操作系统的文件系统上,可以保证写入过程的成功或者失败,数据的完整性因此可以确定。
2)列存储由于需要把一行记录拆分成单列保存,写入次数明显比行存储多(意味着磁头调度次数多,而磁头调度是需要时间的,一般在1ms~10ms) ,再加上磁头需要在盘片上移动和定位花费的时间,实际时间消耗会更大。所以,行存储在写入上占有很大的优势。
3)还有数据修改,这实际也是一次写入过程。不同的是,数据修改是对磁盘上的记录做删除标记。行存储是在指定位置写入一次,列存储是将磁盘定位到多个列上分别写入,这个过程仍是行存储的列数倍。所以,数据修改也是以行存储占优。
列存储使用场景
1)一般来说,一个OLAP类型的查询可能需要访问几百万甚至几十亿个数据行,且该查询往往只关心少数几个数据列。例如,查询今年销量最高的前20个商品,这个查询只关心三个数据列:时间(date)、商品(item)以及销售量(sales amount)。商品的其他数据列,例如商品URL、商品描述、商品所属店铺,等等,对这个查询都是没有意义的。
而列式数据库只需要读取存储着“时间、商品、销量”的数据列,而行式数据库需要读取所有的数据列。因此,列式数据库大大地提高了OLAP大数据量查询的效率
OLTP OnLine TransactionProcessor 在线联机事务处理系统(比如Mysql,Oracle等产品)
OLAP OnLine AnalaysierProcessor 在线联机分析处理系统(比如Hive Hbase等)
2)很多列式数据库还支持列族(column group,Bigtable系统中称为locality group),即将多个经常一起访问的数据列的各个值存放在一起。如果读取的数据列属于相同的列族,列式数据库可以从相同的地方一次性读取多个数据列的值,避免了多个数据列的合并。列族是一种行列混合存储模式,这种模式能够同时满足OLTP和OLAP的查询需求。
3)此外,由于同一个数据列的数据重复度很高,因此,列式数据库压缩时有很大的优势。
总结
行式数据库的特征如下:
①数据是按行存储的。
②没有索引的查询使用大量I/O。比如一般的数据库表都会建立索引,通过索引加快查询效率。
③建立索引和物化视图需要花费大量的时间和资源。
④面对查询需求,数据库必须被大量膨胀才能满足需求。
列式数据库的特性如下:
①数据按列存储,即每一列单独存放。
②数据即索引。
③只访问查询涉及的列,可以大量降低系统I/O。
④每一列由一个线程来处理,即查询的并发处理性能高。
⑤数据类型一致,数据特征相似,可以高效压缩。比如有增量压缩、前缀压缩算法都是基于列存储的类型定制的,所以可以大幅度提高压缩比,有利于存储和网络输出数据带宽的消耗。
- 上一篇: 大数据正当时,理解这几个术语很重要
- 下一篇: 我对技术架构的理解与架构师角色的思考
猜你喜欢
- 2025-05-02 数据库如何快速选型(数据库如何选择合适的数据源)
- 2025-05-02 业务中台已深入人心,数据中台你了解吗?
- 2025-05-02 一遇到复杂分析查询就卡顿?MySQL分析实例了解一下
- 2025-05-02 云计算走向边缘 青云QingCloud全维云平台布局云网边端
- 2025-05-02 祸害阿里云宕机3小时的IO HANG究竟是什么?
- 2025-05-02 我对技术架构的理解与架构师角色的思考
- 2025-05-02 大数据正当时,理解这几个术语很重要
- 2025-05-02 干货分享|优炫数据库支持多业务场景
- 2025-05-02 「技术干货」你不理解的“OLAP”,从这4点一看就可以明白
- 2025-05-02 OLTP和OLAP的区别(olap和oltp的最终数据来源一样吗)
- 最近发表
- 标签列表
-
- location.href (44)
- document.ready (36)
- git checkout -b (34)
- 跃点数 (35)
- 阿里云镜像地址 (33)
- qt qmessagebox (36)
- md5 sha1 (32)
- mybatis plus page (35)
- semaphore 使用详解 (32)
- update from 语句 (32)
- vue @scroll (38)
- 堆栈区别 (33)
- 在线子域名爆破 (32)
- 什么是容器 (33)
- sha1 md5 (33)
- navicat导出数据 (34)
- 阿里云acp考试 (33)
- 阿里云 nacos (34)
- redhat官网下载镜像 (36)
- srs服务器 (33)
- pico开发者 (33)
- https的端口号 (34)
- vscode更改主题 (35)
- 阿里云资源池 (34)
- os.path.join (33)