网站首页 > 教程文章 正文
Mysql到Elasticsearch的数据同步,一般用ETL来实现,但性能并不理想,目前大部分的ETL是定时查询Mysql数据库有没有新增数据或者修改数据,如果数据量小影响不大,但如果几百万上千万的数据量性能就明显的下降很多,本文是使用Go实现的go-mysql-transfer中间件来实时监控Mysql的Binlog日志,然后同步到Elasticsearch,从实时性、性能效果都不错。
一、go-mysql-transfer
go-mysql-transfer是使用Go语言实现的MySQL数据库实时增量同步工具。能够实时监听MySQL二进制日志(binlog)的变动,将变更内容形成指定格式的消息,发送到接收端。在数据库和接收端之间形成一个高性能、低延迟的增量数据(Binlog)同步管道, 具有如下特点:
1、不依赖其它组件,一键部署
2、集成多种接收端,如:Redis、MongoDB、Elasticsearch、RabbitMQ、Kafka、RocketMQ,不需要再编写客户端,开箱即用
3、内置丰富的数据解析、消息生成规则;支持Lua脚本,以处理更复杂的数据逻辑
4、支持监控告警,集成Prometheus客户端
5、高可用集群部署
6、数据同步失败重试
7、全量数据初始化
详情及安装说明 请参见: MySQL Binlog 增量同步工具go-mysql-transfer实现详解
项目开源地址:go-mysql-transfer
二、配置
# app.yml
target: elasticsearch #目标类型
#elasticsearch连接配置
es_addrs: 127.0.0.1:9200 #连接地址,多个用逗号分隔
es_version: 7 # Elasticsearch版本,支持6和7、默认为7
#es_password: # 用户名
#es_version: # 密码
三、数据转换规则
相关配置如下:
rule:
-
schema: eseap #数据库名称
table: t_user #表名称
#order_by_column: id #排序字段,存量数据同步时不能为空
#column_lower_case: true #列名称转为小写,默认为false
#column_upper_case:false#列名称转为大写,默认为false
column_underscore_to_camel: true #列名称下划线转驼峰,默认为false
# 包含的列,多值逗号分隔,如:id,name,age,area_id 为空时表示包含全部列
#include_columns: ID,USER_NAME,PASSWORD
#exclude_columns: BIRTHDAY,MOBIE # 排除掉的列,多值逗号分隔,如:id,name,age,area_id 默认为空
#default_column_values: area_name=合肥 #默认的列-值,多个用逗号分隔,如:source=binlog,area_name=合肥
#date_formatter: yyyy-MM-dd #date类型格式化, 不填写默认yyyy-MM-dd
#datetime_formatter: yyyy-MM-dd HH:mm:ss #datetime、timestamp类型格式化,不填写默认yyyy-MM-dd HH:mm:ss
#Elasticsearch相关
es_index: user_index #Index名称,可以为空,默认使用表(Table)名称
#es_mappings: #索引映射,可以为空,为空时根据数据类型自行推导ES推导
# -
# column: REMARK #数据库列名称
# field: remark #映射后的ES字段名称
# type: text #ES字段类型
# analyzer: ik_smart #ES分词器,type为text此项有意义
# #format: #日期格式,type为date此项有意义
# -
# column: USER_NAME #数据库列名称
# field: account #映射后的ES字段名称
# type: keyword #ES字段类型
示例一
t_user表,数据如下:
自动创建的Mapping,如下:
同步到Elasticsearch的数据如下:
示例二
t_user表,同实例一
使用如下配置:
rule:
-
schema: eseap #数据库名称
table: t_user #表名称
order_by_column: id #排序字段,存量数据同步时不能为空
column_lower_case: true #列名称转为小写,默认为false
#column_upper_case:false#列名称转为大写,默认为false
#column_underscore_to_camel: true #列名称下划线转驼峰,默认为false
# 包含的列,多值逗号分隔,如:id,name,age,area_id 为空时表示包含全部列
#include_columns: ID,USER_NAME,PASSWORD
#exclude_columns: BIRTHDAY,MOBIE # 排除掉的列,多值逗号分隔,如:id,name,age,area_id 默认为空
default_column_values: area_name=合肥 #默认的列-值,多个用逗号分隔,如:source=binlog,area_name=合肥
#date_formatter: yyyy-MM-dd #date类型格式化, 不填写默认yyyy-MM-dd
#datetime_formatter: yyyy-MM-dd HH:mm:ss #datetime、timestamp类型格式化,不填写默认yyyy-MM-dd HH:mm:ss
#Elasticsearch相关
es_index: user_index #Index名称,可以为空,默认使用表(Table)名称
es_mappings: #索引映射,可以为空,为空时根据数据类型自行推导ES推导
-
column: REMARK #数据库列名称
field: remark #映射后的ES字段名称
type: text #ES字段类型
analyzer: ik_smart #ES分词器,type为text此项有意义
#format: #日期格式,type为date此项有意义
-
column: USER_NAME #数据库列名称
field: account #映射后的ES字段名称
type: keyword #ES字段类型
es_mappings 定义索引的mappings(映射关系),不定义es_mappings则使用列类型自动创建索引的mappings(映射关系)。
自动创建的Mapping,如下:
同步到Elasticsearch的数据如下:
四、Lua脚本
使用Lua脚本可以实现更复杂的数据处理逻辑,go-mysql-transfer支持Lua5.1语法。
示例一
t_user表,数据如下:
引入Lua脚本:
#规则配置
rule:
-
schema: eseap #数据库名称
table: t_user #表名称
order_by_column: id #排序字段,存量数据同步时不能为空
lua_file_path: lua/t_user_es.lua #lua脚本文件
es_index: user_index #Elasticsearch Index名称,可以为空,默认使用表(Table)名称
es_mappings: #索引映射,可以为空,为空时根据数据类型自行推导ES推导
-
field: id #映射后的ES字段名称
type: keyword #ES字段类型
-
field: userName #映射后的ES字段名称
type: keyword #ES字段类型
-
field: password #映射后的ES字段名称
type: keyword #ES字段类型
-
field: createTime #映射后的ES字段名称
type: date #ES字段类型
format: yyyy-MM-dd HH:mm:ss #日期格式,type为date此项有意义
-
field: remark #映射后的ES字段名称
type: text #ES字段类型
analyzer: ik_smart #ES分词器,type为text此项有意义
-
field: source #映射后的ES字段名称
type: keyword #ES字段类型
es_mappings 定义索引的mappings(映射关系),不定义es_mappings则根据字段的值自动创建mappings(映射关系)。根据es_mappings 生成的mappings如下:
user_index索引mappings
Lua脚本:
local ops = require("esOps") --加载elasticsearch操作模块
local row = ops.rawRow() --当前数据库的一行数据,table类型,key为列名称
local action = ops.rawAction() --当前数据库事件,包括:insert、update、delete
local id = row["ID"] --获取ID列的值
local userName = row["USER_NAME"] --获取USER_NAME列的值
local password = row["PASSWORD"] --获取USER_NAME列的值
local createTime = row["CREATE_TIME"] --获取CREATE_TIME列的值
local remark = row["REMARK"] --获取REMARK列的值
local result = {} -- 定义一个table,作为结果集
result["id"] = id
result["userName"] = userName
result["password"] = password
result["createTime"] = createTime
result["remark"] = remark
result["source"] = "binlog" -- 数据来源
if action == "insert" then -- 只监听新增事件
ops.INSERT("t_user",id,result) -- 新增,参数1为index名称,string类型;参数2为要插入的数据主键;参数3为要插入的数据,tablele类型或者json字符串
end
同步到Elasticsearch的数据如下:
示例二
t_user表,同实例一
引入Lua脚本:
schema: eseap #数据库名称
table: t_user #表名称
lua_file_path: lua/t_user_es2.lua #lua脚本文件
未明确定义index名称、mappings,es会根据值自动创建一个名为t_user的index。
使用如下脚本:
local ops = require("esOps") --加载elasticsearch操作模块
local row = ops.rawRow() --当前数据库的一行数据,table类型,key为列名称
local action = ops.rawAction() --当前数据库事件,包括:insert、update、delete
local id = row["ID"] --获取ID列的值
local userName = row["USER_NAME"] --获取USER_NAME列的值
local password = row["PASSWORD"] --获取USER_NAME列的值
local createTime = row["CREATE_TIME"] --获取CREATE_TIME列的值
local result = {} -- 定义一个table,作为结果集
result["id"] = id
result["userName"] = userName
result["password"] = password
result["createTime"] = createTime
result["remark"] = remark
result["source"] = "binlog" -- 数据来源
if action == "insert" then -- 只监听新增事件
ops.INSERT("t_user",id,result) -- 新增,参数1为index名称,string类型;参数2为要插入的数据主键;参数3为要插入的数据,tablele类型或者json字符串
end
同步到Elasticsearch的数据如下:
esOps模块提供的方法如下:
- INSERT: 插入操作,如:ops.INSERT(index,id,result)。参数index为索引名称,字符串类型;参数index为要插入数据的主键;参数result为要插入的数据,可以为table类型或者json字符串
- UPDATE: 修改操作,如:ops.UPDATE(index,id,result)。参数index为索引名称,字符串类型;参数index为要修改数据的主键;参数result为要修改的数据,可以为table类型或者json字符串
- DELETE: 删除操作,如:ops.DELETE(index,id)。参数index为索引名称,字符串类型;参数id为要删除的数据主键,类型不限;
文章来源:
https://www.jianshu.com/p/5a9b6c4f318c
猜你喜欢
- 2025-03-14 CAS单点登录(第7版)6.认证(cas单点退出)
- 2025-03-14 Dockerfile构建mysql8.0.27数据库
- 2025-03-14 Docker篇(五):容器之间该如何通讯?
- 2025-03-14 MySql高可用集群MySQL Router负载均衡读写分离
- 2025-03-14 MySQL MGR集群原理及实践(mysql集群架构)
- 2025-03-14 「原创」基于CentOS环境下,LNMP+REDIS+YAF+Java环境搭建
- 2025-03-14 MySQL系列-源码编译安装(v8.0.25)
- 2025-03-14 MySQL海量数据优化(理论+实战)(mysql数据库优化方案)
- 2025-03-14 RxSqlUtils(base R2dbc)(r2dbc-mysql)
- 2025-03-14 《基于Docker的MySQL主从复制:快速搭建高可用从库》
- 最近发表
-
- 一个可以用来练手的C++开源编译器!
- Linux开发工具使用指南(linux软件开发工具)
- Linux下Makefile文件的模式规则和自动化变量
- 程序员的副业秘籍!一款可以快速搭建各类系统的后台管理系统
- postgresql自定义函数实现,通过contrib模块进行扩展
- Linux GCC编译及Makefile使用(gcc makefile编写)
- wordpress独立站上线两周没收录?原来是robots.txt搞的鬼…
- make sure用法解析(make sure sth)
- 每天一个 Python 库:Django全能Web框架,一站式后台开发
- Makefile实践(makefile经典教程)
- 标签列表
-
- location.href (44)
- document.ready (36)
- git checkout -b (34)
- 跃点数 (35)
- 阿里云镜像地址 (33)
- qt qmessagebox (36)
- mybatis plus page (35)
- vue @scroll (38)
- 堆栈区别 (33)
- 什么是容器 (33)
- sha1 md5 (33)
- navicat导出数据 (34)
- 阿里云acp考试 (33)
- 阿里云 nacos (34)
- redhat官网下载镜像 (36)
- srs服务器 (33)
- pico开发者 (33)
- https的端口号 (34)
- vscode更改主题 (35)
- 阿里云资源池 (34)
- os.path.join (33)
- redis aof rdb 区别 (33)
- 302跳转 (33)
- http method (35)
- js array splice (33)